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Abstract

We study in this paper harmonic maps and harmonic morphism on Sasakian
manifolds. We also give some results on the spectral theory of a harmonic map for
which the target manifold is a Sasakian space form.

1 Introduction

The theory of harmonic maps between Riemannian manifolds endoweed with some
special structures has its origin in a paper of Lichnerowicz (see [12]) in which
he considered holomorphic maps between compact Kähler manifolds. He proved
that such a map is not only a harmonic map but also a minimizer of the energy
functional in its homotopy class.

Ianuş and Pastore developed a theory of harmonic maps between manifolds
endowed with almost contact metric structures (see [9]). Following the ideas of
Rawnsley, they introduced a notion analogous to holomorphy. Using similar tools
Chinea studied submersions between almost contact metric manifolds (see [2]). In
Section 3 we prove an analougue result to that obtained by Lichnerowicz but in
the case when the target manifold is Sasakian.

The Laplace-Beltrami operator of a compact Riemannian (M, g) can be viewed
as the Jacobi operator of a constant harmonic map from (M, g) into a unit circle
This is a good reason to study the spectral geometry of the Jacobi operator of
a harmonic map. This was done for Kähler manifolds with constant holomorphic
curvature (see [14]) and for Sasakian manifolds with constant ϕ-sectional curvature
(see [11]). We will prove in Section 4 that the spectrum of the Jacobi operator
associated to a harmonic map determines the geometric properties as those of
harmonic morphisms in the casewhen the target manifold is a sasakian space-form.

Harmonic morphism are maps which pull back germs of real valued harmonic
functions on the target manifold to germs of harmonic functions on the domain. In
Section 5 We prove a characterization theorem for harmonic morphisms defined on
Sasakian manifolds to a Hermitian manifold. A similar type of result was obtained
by Gudmundsson and Wood but in the complex case (see [8]).
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2 Prelminaries

In this section, we recall some well known facts concerning harmonic maps on
Riemannin manifolds and almost contact metric manifolds.
Let F : (M, g) −→ (N,h) be a smooth map between two Riemannian manifolds of
dimensions m and n respectively. The energy density of F is a smooth function
e(F ) : M −→ [0,∞) given by

e(F )p =
1

2
Trg(F

∗h)(p) =
1

2

m∑
i=1

h(F∗pui, F∗pui),

for any p ∈M and any orthonormal basis {u1, . . . , um} of TpM . If M is a compact
Riemannian manifold, the energy E(F ) of F is the integral of its energy density:

E(F ) =

∫
M

e(F )υg ,

where υg is the volume measure associated with the metric g on M. A map
F ∈ C∞(M,N) is said to be harmonic if it is a critical point of the energy func-
tional E on the set of all maps between (M, g) and (N,h). Now, let (M, g) be a
compact Riemannian manifold. If we look at the Euler-Lagrange equations for the
corresponding variational problem, a map F : M −→ N is a harmonic if and only
if τ(F ) ≡ 0, where τ(F ) is tension field which is defined by

τ(F ) = Trg∇̃dF,

where ∇̃ is the connection induced by the Levi-Civita connection on M and the
F -pullback connection of the Levi Civita connection on N .

We recall now some definitions and basic formulas on almost contact metric
manifolds (see [1] for more details).
An odd dimensional Riemannian manifold M2n+1 is said to be an almost contact
manifold if there exist on M a (1, 1)-tensor field ϕ, a vector field ξ and a 1-form η
such that

ϕ2 = −I + η ⊗ ξ and η(ξ) = 1.

In an almost contact manifold we also have ϕ(ξ)=0 and ηoϕ = 0.
On any almost contact manifold, we can define a compatible metric that is a metric
g such that

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X, Y on M. In this case the manifold will be called almost
contact metric manifold. An almost contact metric manifold is said to be a contact
metric manifold if dη=Ω, where Ω is the fundamental 2 form defined by Ω(X,
Y)=g(X, ϕY) for X, Y ∈ Γ(TM). In analogy with the integrability condition on
almost complex manifolds, the almost contact metric structure of M is said to be
normal if

[ϕ,ϕ] + 2dη ⊗ ξ = 0,

where [ϕ, ϕ] denotes the Nijenhuis torsion of ϕ, given by

[ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ].
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A normal contact metric manifold is called a Sasakian manifold.

In 1990 Chinea and Gonzalez (see [[3]]) gave a classification for almost contact
metris manifolds through the study of the covariant derivative of the fundamental
2-form of those manifolds. An almost contact metric manifold belongs to the class
C5 ⊕ C6 if and only if

(∇XΩ)(Y,Z) =
1

2n
{[g(X,Z)η(Y )− g(X,Y )η(Z)]δΩ(ξ)+

+[−g(X,ϕY )η(Z) + g(X,ϕ(Z))η(Y )]δη}

where ∇ is the Levi-Civita connection on M . If β = 1
2nδη = 0 we get the class C6

which includes the class of Sasakian manifolds for α = 1
2nδΩ(ξ) = 1.

3 Harmonic maps on Sasakian manifolds

Ianuş and Pastore developed a theory of harmonic maps between manifolds en-
dowed with almost contact metric structures (see [[9]]). Following the ideas of
Rawnsley, they introduced a notion analogous to holomorphy. In this section we
prove an analougue result to that obtained by Lichnerowicz but in the case when
teh target manifold is Sasakian.

We will prove for the begining an usefull Lemma:

Lemma 3.1. Let F : N →M be a (J, ϕ)-holomorphic map from an almost Hermi-
tian manifold N(J, h) to a manifold M(ϕ, ξ, η, g) which belongs to the class C5⊕C6.
Then τ(F ) ∈ Γ(D) if and only if M belongs to the class C6.

Proof. Let {e1, . . . , en, Je1, . . . , Jen} be an orthonormal local frame in TN . As F
is (ϕ, J)-holomorphic, we have

g(τ(F ), ξ) = g((∇̃eiF∗)ei + (∇̃JeiF∗)Jei, ξ) =

= g(∇F∗eiF∗ei, ξ) + g(∇ϕF∗eiϕF∗ei, ξ)−
− g(F∗(∇̄eiei + ∇̄JeiJei), ξ) (1)

where ∇ si ∇̄ are the Levi Civita connections on M and N respectively.
We have to notice that F∗ei and F∗Jei belongs to the distribution D. Indeed,

η(F∗ei) = −η(F∗J
2ei) = −η(ϕF∗Jei) = 0.

Using the above remark, as ∇ is the Levi-Civita connection, we have

g(τ(F ), ξ) = −g(F∗ei,∇F∗eiξ)− g(ϕF∗ei,∇ϕF∗eiξ)−
− g(F∗(∇̄eiei + ∇̄JeiJei), ξ).

Computing now the divergence of J , we get

divJ = (∇̄eiJ)ei + (∇̄JeiJ)Jei =

= ∇̄eiJei − J(∇̄eiei)− ∇̄Jeiei − J(∇̄JeiJei) =

= [ei, Jei]− J(∇̄eiei + ∇̄JeiJei).
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and thus
∇̄eiei + ∇̄JeiJei = J(divJ − [ei, Jei]) (2)

Now, from the relations (1) and (3), as ϕ◦F∗ = F∗◦J , the last term in (1) vanishes
and we get

g(τ(F ), ξ) = −g(F∗ei,∇F∗eiξ)− g(ϕF∗ei,∇ϕF∗eiξ) (3)

As F∗ei, ϕF∗ei ∈ Γ(D) and because M is a manifold belonging to the class C5⊕C6,
we have

∇F∗eiξ = −αϕF∗ei + βF∗ei

∇ϕF∗eiξ = αF∗ei + βϕF∗ei.

If we use the above relations in (3) and using the skewsymmetry of the fundamental
2-form Ω, we get

g(τ(F ), ξ) = −2β

n∑
i=1

g(F∗ei, F∗ei).

We have just obtained τ(F ) ∈ Γ(D) if and only if β = 0, that is M is a manifold
belonging to the class C6.

We are able to prove now the following

Theorem 3.1. Let N(J, h) be a Kähler manifold and M(ϕ, ξ, η, g) be a manifold
belonging to the class C5 ⊕ C6. Then any (J, ϕ)−holomorphic map F : N → M is
harmonic if and only if M belongs to the C6.

Proof. We recall that for any (J, ϕ)−holomorphic map F , the tension field can be
computed by

ϕ(τ(F )) = F∗(divJ)− Trhβ

where β(X,Y ) = (∇̃Xϕ)F∗Y .
Let {e1, . . . , en, Je1, . . . , Jen} be a local Hermitian frame in TN . As N is a

Kähler manifold, we have

divJ =

n∑
i=1

{(∇eiJ)ei + (∇JeiJ)Jei} = 0

and thus the above formula become

ϕ(τ(F )) = −Trhβ

If we look at the trace of the bilinear form β we have:

Trhβ =

n∑
i=1

{(∇̃eiϕ)F∗ei + (∇̃Jeiϕ)F∗Jei} =

=

n∑
i=1

{(∇F∗eiϕ)F∗ei + (∇ϕF∗eiϕ)ϕF∗ei}.

As M belongs to the class C5 ⊕ C6 we get

Trhβ = 2α

n∑
i=1

g(F∗ei, F∗ei)ξ
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and thus

ϕ(τ(F )) = −2α

n∑
i=1

g(F∗ei, F∗ei)ξ.

Finally we obtain
τ(F ) = η(τ(F ))ξ

and thus F is harmonic if and only if τ(F ) ∈ Γ(D).
Using now the Lemma 3.1 we obtain that F is harmonic if and only if β = 0

that is M belongs to the class C6

In particular, as the class C6 includes the Sasakian manifolds we get

Corollary 3.1. Let N(J, h) be a Kähler manifold and M(ϕ, ξ, η, g) be a Sasakian
manifold. Then any (J, ϕ)-holomorphic map F : N →M is harmonic.

4 Spectral geometry on Sasakian manifolds

The spectral geometry of the Laplace-Beltrami operator is a field full of interesting
and deep results. For example, we know that if the spectrum Spec(∆) of the
Laplace-Beltrami operator of a compact Riemannian manifold (M, g) is the same
with those of the standard sphere (Sn, can), for any n < 7, then (M, g) is izometric
with (Sn, can).

As the Laplace-Beltrami operator of a compact Riemannian (M, g) can be
viewed as the Jacobi operator of a constant harmonic map from (M, g) into a
unit circle, a good subject is to study the spectral geometry of the Jacobi operator
of a harmonic map. This was done for Kähler manifolds with constant holomorphic
curvature (see [14]) and for Sasakian manifolds with constant ϕ-sectional curvature
(see [11]). We will give new results concerning the last topic.

We recall that the Jacobi operator JF of a harmonic map F : (M, g)→ (N,h)
is defined by

JF = ∆FV −RFV (4)

for any V ∈ Γ(E), where ∆ is the rough Laplacean associated to the induced
connection ∇̃ in the induced bundle E = F−1TN defined by ∇̃XV = ∇NF∗XV and

RFV =

m∑
i=1

RN (V, F∗ei)F∗ei

for any X ∈ Γ(TM) and any local orthonormal frame {e1, . . . , em} in TM .
Consider the semigroup e−tJF defined by

e−tJF V (x) =

∫
M

K(t, x, y, JF )dϑg(y)

where K(t, x, y, JF ) ∈ Hom(Ey, Ex) is the kernel function (x, y ∈ M,Ex is the
fiber over x). Then we have the asymptotic expansion for the L2-trace

Tr(e−tJF ) =

∞∑
i=1

e−tλi ' (4πt)−
m
2

∞∑
n=0

tnan(JF ), t→ 0+ (5)
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where each an(JF ) is the spectral invariant of JF , which depends only on the
discret spectrum:

Spec(JF ) = {λ1 ≤ λ2 ≤ . . . λn ≤ . . .→∞}

Using the results of Gilkey ([7]) for the Jacobi operator JF , Urakawa obtained
(see [14]):

Theorem 4.1. For any harmonic map F : (M,h)→ (N, g) from a m-dimensional
compact connected manifold without border we have:

a0(JF ) = nvol(M,h)

a1(JF ) =
n

6

∫
M

τhdϑh +

∫
M

Tr(RF )dϑh

a2(JF ) =
n

360

∫
M

[5τ2h − 2‖ρh‖2 + 2‖Rh‖2]dϑh+

+
1

360

∫
M

[−30‖R∇̃‖2 + 60τhTr(RF ) + 180Tr(R2
F )]dϑh

where R∇̃ is the curvature tensor of the connection ∇̃ in E, defined by R∇̃ = F ∗RN ,
and Rh, ρh, τh are the curvature tensor, the Ricci tensor and scalar curvature on
M .

Let M(ϕ, η, ξ, g) be a Sasakian manifold. A plane section TpM is called a ϕ-
section if there exists a vector X ∈ TpM orthogonal to ξ such that {X,ϕX} is
a orthonormal basis of this plane section. The sectional curvature K(X,ϕX) =
H(X) it is called the ϕ-sectional curvature (see [1]).

In analogy with the case of holomorphic sectional curvatures of Kähler mani-
folds, the ϕ-sectional curvatures determine the curvature of a Sasakian manifold.

It is known that, if on each point of a Sasakian manifold of dimension ≥ 5 the
ϕ-sectional curvature is independent with respect to the ϕ-section on this point,
then this is constant and the curvature tensor is given by:

R(X,Y )Z =
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }+

c− 1

4
{η(X)η(Z)Y−

−η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ+

+Ω(Z, Y )ϕX − Ω(Z,X)ϕY + 2Ω(X,Y )ϕZ}

where c is the constant ϕ-sectional curvature.
The sphere S2n+1 with the canonical contact structure induced on the unit

sphere on Cn+1 is an example of Sasakian manifold with the constant ϕ-sectional
curvature c = 1.

Another example is R2n+1 with the coordinates (xi, yi, z), 1 ≤ i ≤ n, which
admits the Sasakian structure

η =
1

4
(dz −

n∑
i=1

yidxi), g =
1

4
(η ⊗ η +

n∑
i=1

((dxi)2 + (dyi)2)).

With this metric, R2n+1 is a Sasakian manifold with the constant ϕ-sectional cur-
vature c = −3.
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Let F : (M,h) → (N, g) be a harmonic map from a m-dimensional compact
connected Riemannian manifold without border to a (2n+1)-dimensional Sasakian
manifold with constant ϕ-sectional curvature c.

In the following we will use the notations: α = c+3
4 , β = c−1

4

‖F ∗η‖2 =

m∑
i=1

η(F ∗ei)
2 ‖F ∗Ω‖2 =

m∑
i,j=1

g(F∗ei, ϕF∗ej)
2

‖F ∗g‖2 =

m∑
i,j=1

g(F∗ei, F∗ej)
2

F ∗(η × η × g) =

m∑
i,j=1

η(F∗ei)η(F∗ej)g(F∗ei, F∗ej)

where {e1, . . . , em} is a local orthonormal frame on TM .
From the definition of RF we have

Tr(RF ) =

m∑
i=1

2n+1∑
a=1

g(R(va, F∗ei)F∗ei, va) =

= 4(αn+ β)e(F )− 2β(n+ 1)‖F ∗η‖2.

Using the above relations we obtain

Tr(R2
F ) =

m∑
i,j=1

2n+1∑
a=1

g(R(va, F∗ei)F∗ei, R(va, F∗ej)F∗ej) =

= (α2 + 9β2)‖F ∗g‖2 − 4(αβ + 4β2)F ∗(η × η × g) + 2β2(n+ 7)‖F ∗η‖4+

+4[β2 + α2(2n− 1) + 4αβ]e(F )2 − 8(2β2 + αβn)e(F )‖F ∗η‖2 − 6αβ‖F ∗Ω‖2.

Now we are able to obtain:

‖R∇̃‖2 =

m∑
i,j=1

2n+1∑
a,b=1

g(R(F∗ei, F∗ej)va, vb)g(R(F∗ei, F∗ej)va, vb) =

= 8(α2 + β2)e(F )2 − 16αβe(F )‖F ∗η‖2 − 2(α2 + β2)‖F ∗g‖2+

+4[2β2(n+ 1) + 3αβ]‖F ∗Ω‖2 + 8αβF ∗(η × η × g)

Finally, by replacing these relations in the formulas in the Theorem ?? we obtain:

Theorem 4.2. Let F : (M,h)→ (N, g) be a harmonic map from a m-dimensional
compact connected Riemannian manifold without border to a (2n+ 1)-dimensional
Sasakian manifold with constant ϕ-sectional curvature c. Then

a0(JF ) = (2n+ 1)vol(M,h)

a1(JF ) =
2n+ 1

6

∫
M

τhdϑh + 4(αn+ β)

∫
M

e(F )dϑh − 2β(n+ 1)

∫
M

‖F ∗η‖2dϑh

a2(JF ) =
2n+ 1

360

∫
M

(5τ2h − 2‖ρh‖2 + 2‖Rh‖2)dϑh+
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+
1

3

∫
M

[2(αn+ β)e(F )− β(n+ 1)‖F ∗η‖2)τhdϑh+

+
4

3
[α2(3n− 2) + 6αβ + β2]

∫
M

e(F )2dϑh + β2(n+ 7)

∫
M

‖F ∗η‖4ϑh−

−2

3
[β2(1 + n) + 6αβ]

∫
M

‖F ∗Ω‖2dϑh −
8

3
(αβ + 3β2)

∫
M

F ∗(η × η × g)dϑh+

+
4

3
[αβ(1− 3n)− 6β2]

∫
M

e(F )‖F ∗η‖2dϑh +
2

3
(α2 + 7β2)

∫
M

‖F ∗g‖2dϑh.

Now we consider the case when F : M → N is a (J, ϕ)-holomorphic from
a Kähler manifold with dimension m = 2p, to a (2n + 1)-dimensional Sasakian
manifold with constant ϕ-sectional curvature c. As we have seen, this is a harmonic
map.

Let us remark that for any X ∈ Γ(TM) we have

η(F∗X) = −η(F∗J
2X) = −η(ϕF∗JX) = 0

and thus we get
‖F ∗η‖2 = 0, F ∗(η × η × g) = 0.

On the other hand, ‖F ∗Ω‖2 = ‖F ∗g‖2. Indeed, let {ei} = {Xk, JXk} be a local
Hermitian frame in TM , 1 ≤ k ≤ p. Then we have

‖F ∗Ω‖2 =

m∑
i=1

p∑
k=1

{g(F∗ei, ϕF∗Xk)2 + g(F∗ei, ϕF∗JXk)2} =

=

m∑
i=1

p∑
k=1

{g(F∗ei, F∗JXk)2 + g(F∗ei, F∗Xk)2} =

=

m∑
i,j=1

g(F∗ei, F∗ej)
2 = ‖F ∗g‖2.

We have obtained

Proposition 4.1. Let F : (M,h) → (N, g) be a (J, ϕ)-holomorphic map from a
compact connected Kähler manifold to a (2n + 1)-dimensional Sasakian manifold
with constant ϕ-sectional curvature c. Then

a0(JF ) = (2n+ 1)vol(M,h)

a1(JF ) =
2n+ 1

6

∫
M

τhdϑh + 4(αn+ β)

∫
M

e(F )dϑh

a2(JF ) =
2n+ 1

360

∫
M

(5τ2h − 2‖ρh‖2 + 2‖Rh‖2)dϑh+

+
2

3
(αn+ β)

∫
M

e(F )τhdϑh +
4

3
(3α2n− 2α2 + 6αβ + β2)

∫
M

e(F )2dϑh+

+
2

3
(α2 + 6β2 − 6αβ + nβ2)

∫
M

‖F ∗g‖2dϑh.

As a first application, using the above proposition, we get
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Corollary 4.1. Let F, F ′ : M → N two (J, ϕ)-holomorphic maps from a compact
Kähler manifold with constant curvature τh, to a Sasakian manifold with constant
ϕ-sectional curvature c = 1, such that SpecJF = SpecJF ′ . Then

E(F ) = E(F ′)

(6n−4)

∫
M

e(F )2dϑh+

∫
M

‖F ∗g‖2dϑh = (6n−4)

∫
M

e(F ′)2dϑh+

∫
M

‖F ′∗g‖2dϑh.

Another application of the Proposition 4.1 is the following

Corollary 4.2. Let F, F ′ : M → N be two (J, ϕ)-holomorphic maps which are
horizontally conformal from a compact Kähler manifold with constant curvature
τh, to a Sasakian manifold with constant ϕ-sectional curvature c = 1, such that
SpecJF = SpecJF ′ . Suppose that SpecJF = SpecJF ′ . Then, if F is a Riemannian
submersion, F ′ is also a Riemannin submersion.

Proof. Let {ei}mi=1 be a orthonormal local frame on TM . As F is a Riemannian
submersion, we have F ∗g = h and thus

e(F ) =
1

2

m∑
i=1

g(F∗ei, F∗ei) =
1

2

m∑
i=1

h(ei, ei) =
m

2
.

On the other hand,

‖F ∗g‖2 =

m∑
i,j=1

g(F∗ei, F∗ej)
2 =

m∑
i,j=1

h(ei, ej)
2 = m.

As F ′ is horizontally conformal, we have F ∗g = λ2h, (λ is the dilation function of
F ′), and thus

e(F ′) =
1

2

m∑
i=1

g(F∗ei, F∗ei) =
λ2m

2

‖F ∗g‖2 =

m∑
i,j=1

λ4h(ei, ej)
2 = λ4m

Using now the formulas obtained in Proposition 4.1 we get∫
M

λ2dϑh =

∫
M

1dϑh

∫
M

λ4dϑh =

∫
M

1dϑh.

Finally from the Cauchy inequality, we obtain λ2 = 1 and thus F ′ is also a Rie-
mannian submersion.

5 Harmonic morphisms on Sasakian manifolds

Harmonic morphism are maps which pull back germs of real valued harmonic func-
tions on the target manifold to germs of harmonic functions on the domain, that
is, a smooth map F : (M, g)→ (N,h) is a harmonic morphism if for any harmonic
function f : U → R, defined on an open subset U of N such that π−1(U) is non-
empty, the composition f ◦F : π−1(U)→ R is a harmonic function. The following
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characterization of harmonic morphisms is due to Fuglede and Ishihara: A smooth
map F is a harmonic morphism if and only if F is horizontally conformal harmonic
map (see [6] and [10]). Now we look for harmonic morphisms defined on Sasakian
manifolds.

Proposition 5.1. Let M(ϕ, ξ, η, g) be an almost contact metric manifold, N(J, h)
be an almost Hermitian manifold and F : M → N a horizontally conformal (ϕ, J)-
holomorphic map. Then the following conditions are equivalent:

(i) divJ = 0
(ii) Trgβ = 0

where β(X,Y ) = (∇̃XJ)F∗Y for any X,Y ∈ Γ(TM).

Proof. Suppose that M is (2m+ 1)-dimensional and N has the real dimension 2n.
Let {Y1, . . . , Yn, JY1, . . . , JYn} a local Hermitian frame on TN .

We denote by {Y ∗1 , . . . , Y ∗n } the unique horizontal lifts of the fields {Y1, . . . , Yn}
that is, Y ∗i are horizontal fields and F∗(Y

∗
i ) = Yi.

For the normalization reasons, we define the fields Xi = λY ∗i , where λ is the
dilation function of F . As F is a horizontally conformal map, we have

g(Xi, Xj) = λ2g(Y ∗i , Y
∗
j ) = h(F∗Y

∗
i , F∗Y

∗
j ) = h(Yi, Yj) = δij

and thus {X1, . . . , Xn} is an orthonormal system. Extend this system to a local
ϕ-adaptated frame

{X1, . . . , Xn, Xn+1, . . . , Xm, ϕX1, . . . , ϕXn, ϕXn+1, . . . , ϕXm, ξ}.

It is clear that {X1, . . . , Xn, ϕX1, . . . , ϕXn, ξ} is a frame on the horizontal space,
and {Xn+1, . . . , Xm, ϕXn+1, . . . , ϕXm, ξ} are vertical fields. Then, the trace of the
biliear form β is

Trgβ =

m∑
i=1

(∇̃Xi
J)F∗Xi +

m∑
i=1

(∇̃ϕXi
J)F∗ϕXi + (∇̃ξJ)F∗ξ.

As F is (ϕ, J)-holomorphic, it is not difficult to see that F∗ξ = 0. On the other
hand, from the construction, {Xn+1, . . . , Xm, ϕXn+1, . . . , ϕXm} is a system of ver-
tical fields, and thus

Trgβ =

n∑
i=1

(∇̃Xi
J)F∗Xi +

n∑
i=1

(∇̃ϕXi
J)F∗ϕXi =

=

n∑
i=1

(∇̃Xi
J)F∗Xi +

n∑
i=1

(∇̃ϕXiJ)JF∗Xi.

Now, using the above contruction, we have:

Trgβ =

n∑
i=1

{∇F∗XiJF∗Xi−J(∇F∗XiF∗Xi)+∇JF∗XiJ
2F∗Xi−J(∇JF∗XiJF∗Xi)} =

λ

n∑
i=1

{∇F∗Y ∗i λJF∗Y
∗
i −J(∇F∗Y ∗i λF∗Y

∗
i )+∇JF∗YiλJ

2F∗Y
∗
i −J(∇JF∗Y ∗i λJF∗Y

∗
i )} =

10



= λ

n∑
i=1

{∇Yi
λJYi − J(∇Yi

λYi) +∇JYi
λJ2Yi − J(∇JYi

λJYi)} =

= λ2
n∑
i=1

{∇YiJYi − J(∇YiYi)+

+∇JYiJ
2Yi + J(∇JYiJYi)} =

= λ2
n∑
i=1

{(∇Yi
J)Yi + (∇JYi

J)JYi} =

= λ2divJ

and thus
Trgβ = λ2divJ.

Now the equivalence of the two statements is proved.

We will prove now a characterization theorem for harmonic morphisms defined
on an almost contact manifolds to a Hermitian manifold. A similar type of result
was obtained by Gudmundsson and Wood but in the complex case (see [8]).

Theorem 5.1. Let F : M → N be a horizontally conformal (ϕ, J)-holomorphic
map from an almost contact metric manifold M(ϕ, ξ, η, g) to a Hermitian manifold
N(J, h). Then any two of the following conditions imply the third

(i) divJ = 0
(ii) F∗(divϕ) = 0
(iii) F is harmonic and thus harmonic morphism.

Proof. We recall that if F : M → N is a (ϕ, J)-holomorphic map from an almost
contact metric manifold M(ϕ, ξ, η, g) to a Hermitian manifold N(J, h) then the
tension fielf of F satisfiyes the relation

J(τ(F )) = F∗(divϕ)− Trgβ

If we suppose that divJ = 0, as F is horizontally conformal (ϕ, J)-holomorphic,
using the above proposition, we get Trgβ = 0. If moreover, F∗(divϕ) = 0 using
the above formula for the tension field of F we get τ(F ) = 0 that is F is harmonic.
As F is horizontally conformal, using Fuclede’s theorem we obtain that F is a
harmonic morphism. In this way we have just proved that the first two conditions
imply the third. In a similar maner we prove the other implications

Using the above theorem, we are able to prove the following:

Theorem 5.2. Let F : M → N be a horizontally conformal (ϕ, J)-holomorphic
map from a Sasaki manifold M(ϕ, ξ, η, g) to a Hermitian manifold N(J, h). Then
F is a harmonic morphism if and only if N is a semi-Kähler manifold.

Proof. Let {X1, . . . , Xm, ϕX1, . . . , ϕXm, ξ} be a local orthonarmal ϕ-adaptated
frame on TM . Then the divergence of ϕ is given by

divϕ =

m∑
i=1

(∇Xiϕ)Xi +

m∑
i=1

(∇ϕXiϕ)ϕXi + (∇ξϕ)ξ.

11



As M is a Sasakian manifold, we have

(∇Xi
ϕ)Xi = αξ, (∇ϕXi

ϕ)ϕXi = αξ

(∇ξϕ)ξ = 0

and thus
divϕ = 2nαξ.

But as F is a (ϕ, J)-holomorphic map, we know that F∗ξ = 0 and thus F∗(divϕ) =
0.

Using now the above theorem, as F is a horizontally conformal (ϕ, J)-holomorphic
map, we obtain that F is a harmonic morphism if and only if divJ = 0, that is N
is a semi-Kähler manifold.
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Cătălin Gherghe
Faculty of Mathematics and Computer Sciences,
University of Bucharest,
Academiei Str. 14
010014, Bucharest Romania
E-mail: gherghec@yahoo.com

13


