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ABSTRACT. We introduce the notion of V-minimality, for V' a smooth vector field on a
Riemannian manifold. This is a natural extension of the classical notion of minimality.
To emphasis the utility of this notion we present generalizations of some results from
[1]. Specifically, we prove that a PHH submersion is V-harmonic if and only if it has
minimal fibres and a PHH V-harmonic submersion pulls back complex submanifolds
to V minimal submanifolds.

1. INTRODUCTION

Let (M,g) and (N,h) be compact Riemannian manifolds, V' a smooth vector field
on M and ¢ : M — N a smooth map. In [9],[5] the authors introduced the notion
of V-harmonic map, see Definition 2.1 that naturally generalizes the classical notion of
harmonic map. Unlike the latter, V-harmonicity is not defined via a variational problem,
but rather by imposing the vanishing of a modified tension field, called the V -tension
field of p. If V = 0, the two notions coincide, more generally, the same is true if V is
vertical.

In this generalized context, V-harmonic morphisms appear naturally, [9], and are
directly connected to the minimality of the fibres, exactly as in the classical case, The-
orem 2.6.

In the case of Kéahler target manifolds, harmonic morphisms generalize to pseudo-
harmonic morphisms [8]. Furthermore, if a natural extra-condition that the naturally
almost complex structure on the horizontal distribution satisfies a Kahler-type condition,
then the harmonicity implies the minimality of the fibres. These maps, called pseudo-
horizontally homothetic (PHH) enjoy other geometric properties, [1].

The main goal of this paper is to provide a natural notion of V-minimality. As for
V-harmonicity, minimality corresponds to the case V' = 0. We connect this notion to
PHH maps and their V-harmonicity.

The outline of the paper is as follows. Firstly, we recall the notions needed for our
aim, V-harmonic maps, PHH and PHWC maps, and we briefly review some of their
properties. We then define pseudo V-harmonic morphisms, Definition 3.1 and V-minimal
submanifolds, Definition 3.4. The main results of the paper are Theorem 3.2, Theorem
3.5 and Theorem 3.6. Theorem 3.5 shows that for a PHH submersion, V-harmonicity
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is equivalent to having V-minimal fibres. In Theorem 3.6, we prove that a PHH V-
harmonic submersion pulls back complex submanifolds to V-minimal submanifolds.

2. PRELIMINARIES

2.1. V - Harmonic Maps and Morphisms. We remind the reader of some basic facts
on V-Harmonic Maps and Morphisms that we shall use in the sequel [9],[5].

Definition 2.1. ([5], [9]) Let (M™,g) and (N™,h) be two Riemannian manifolds, V'
a smooth vector field on M, and ¢ : M — N a smooth map. The map ¢ is called
V -harmonic if satisfies:

(1) v (p) = 7(p) +dp(V) =0,

where 7(¢) is the tension field of the map ¢. Since the differential dp of ¢ can be viewed
as a section of the bundle T*M ® ¢ 'T'N, dp(V) is a section of the bundle ¢~ !TN. The
tension 7y () is called the V-tension field of ¢.

Remark 2.2. ([5], [9]) In particular,

1. For V =0, the map ¢ is harmonic.
2. A smooth function f: M — R is said to be V-harmonic if:

Ayv(f) =A(f)+ <V, Vf>=0.

By taking the trace of the second fundamental form, we obtain the tension field of the
map ¢, 7(p) = traceVdyp, which is a section of ¢ !TN. In local coordinates (i);—Tm
on M and (yq) a=Tn ON N, respectively, it has the following expression (see for example

[4], [10]):

(2) T(p) =Y 7(p)®

a=1

9o’

where, denoting by M I‘Z- and V¥ LZZY the Christoffel symbols of M and N, and ¢p® = @oy,,

a 32900‘ Mk &P Ny awﬁ 8@”
a _ ij F

For V' a smooth vector field on M, given in local coordinates on M by V = Z f am ,
the V-tension field of the map ¢ has the followmg expression in local coordmates
n
Ogoo‘ 0
4 =
@ i) = rlel g+ 3 Nt

Using the properties of the second fundamental form and of the tension field of the
composition of two maps, (see [4]), we have the following lemma:

Lemma 2.3. ([9]) The V-tension field of the composition of two maps ¢ : M — N and
Y : N — P is given by:

(5) v (o) = di(1v(p)) + traceVdy(de, dp).
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As in the case of harmonic maps, Zhao (Definition 1.2 in [9]) defined V-harmonic
morphisms as maps between Riemannian manifolds, ¢ : M — N, which pulls back local
harmonic functions on IV to local V-harmonic functions on M.

The following results characterise the harmonic morphisms.

Theorem 2.4. ([9]) Let ¢ : (M™,g) — (N™, h) be a smooth map between Riemannian
manifolds. Then the following conditions are equivalent:
1) ¢ is a V-harmonic morphism;
2) @ is a horizontally weakly conformal V -harmonic map;
3) Vi : W — P a smooth map from an open subset W C N with o= Y(W) # 0, to a
Riemann manifold P, we have: Ty (1 o @) = N\27(¢)), for some smooth function
A2 M — [0, 00);
4) Y1y : W — P a harmonic map from an open subset W C N with o~ *(W) # (),
to a Riemann manifold P, the map ¥ o ¢ is a V-harmonic map;
5) IN2 : M — [0,00) a smooth function such that: Ay (f o ) = N2Af, for any
function f defined on an open subset W of N with o~ (W) # 0.

Corollary 2.5. ([9]) For ¢ : M — N a V-harmonic morphism with dilation A and
¥ : N = P a harmonic morphism with dilation 0, the composition W oy is a V-harmonic
morphism with dilation \(0 o ).

Theorem 2.6. ([9]) For a horizontally weakly conformal map ¢ : M — N with dilation
A, any two of the following conditions imply the third:

1) ¢ is a V-harmonic map (and so a V -harmonic morphisms);
2) V + ViogA\>~™ is vertical at regular points;
3) the fibres of ¢ are minimal at regular points.

2.2. Pseudo Harmonic Morphisms. Pseudo-Horizontally Homothetic Maps.
The notion of harmonic morphisms can be generalized when the target manifold is
endowed with a Kéhler structure (see [8], [6]).

Let us consider a smooth map ¢ : (M™, g) — (N?",J, h) from a Riemannian manifold
to a Kédhler manifold. The map ¢ is said to be a pseudo-harmonic morphism (PHM) if
and only if it pulls back local holomorphic functions on N to local harmonic maps from
M to C.

For any « € M, denote by dyy, : Ty,(,) N — T M the adjoint map of the tangent linear
map dpy : Tp M — Ty N.

If X is a local section on the pull-back bundle ¢ !T'N, then dy*(X) is a local hori-
zontal vector field on M.

Definition 2.7. ([8]) The map ¢ is called pseudo-horizontally (weakly) conformal (short-
ening PHWC) at x € M if [dyp, o dyk, J] = 0.
The map ¢ is called pseudo-horizontally (weakly) conformal if it is pseudo-horizontally

(weakly) conformal at every point of M.

Then, pseudo-harmonic morphism can also be characterised as harmonic, pseudo-
horizontally (weakly) conformal maps (see [8], [6]).

The local description of PHWC condition is given by the following (see [8]): let

(xz)mm be real local coordinates on M, (z,) a=Tn Pe complex local coordinates on N,
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and p® = z4 0, Va = 1,...,n. Then the PHWC condition for ¢ reads:

m

i Op® &pﬁ
1) r
(6) Z gM 3ZEZ al’j 0

ij=1
forall o, 8 =1,...,n.

A special class of pseudo-horizontally weakly conformal maps, called pseudo-horizontally
homothetic maps.

Definition 2.8. ([1]) A map ¢ : (M™,g) — (N?",J,h) is called pseudo-horizontally
homothetic at x (PHH) if is PHWC at a point x € M and satisfy:

(7) dea (Vi!de™ (JY)a) = Jo@ydiea (V3 de* (Y))a)

for any horizontal tangent vector v € T, M and any vector field Y locally defined on a
neighbourhood of p(x).

If the map ¢ is PHWC, then ¢ is called pseudo-horizontally homothetic if and only if
it is pseudo-horizontally homothetic at any point of M i.e. if and only if

8) dp(VY dp*(JY)) = Jdp(VY dp*(Y)),
for any horizontal vector field X on M and any vector field Y on N.

The condition (8) is true for every horizontal vector field X on M and any section Y
of o 'TN. This remark allows us to work with the larger space of sections in the pull
back bundle ¢ 'TN instead of vector fields on NN.

One of the basic properties of pseudo-horizontally homothetic maps (Proposition 3.3,
[1]) shows that a PHH submersion is a harmonic map if and only if it has minimal
fibres. Also, pseudo-horizontally homothetic maps are good tools to construct minimal
submanifolds (Theorem 4.1, [1]).

3. Pseunpo V-HARMONIC MORPHISMS. V-MINIMAL SUBMANIFOLDS

3.1. Pseudo V-Harmonic Morphisms. Generalizing the class of harmonic maps and
morphisms, respectively to V-harmonic maps and pseudo harmonic morphisms we ob-
tain pseudo V-harmonic morphisms with a description similar to pseudo harmonic mor-
phisms.

Definition 3.1. Let (M™, g) be a Riemannian manifold of real dimension m, (N2", J, h)
a Hermitian manifold of complex dimension n, ¢ : M — N a smooth map and V a
smooth vector field on M. The map ¢ is called pseudo V -harmonic morphism (shortening
PVHM) if ¢ is V-harmonic and pseudo horizontally weakly conformal.

The characterization of pseudo harmonic morphism given in [8] remain true in the
general case of V-harmonic maps.

Theorem 3.2. Let ¢ : M — N be a smooth map from a Riemannian manifold (M™, g)
to a Kdhler one (N?",J,h) and V a smooth vector field on M. Then ¢ is pseudo V -
harmonic morphism (PVHM) if and only if it pulls back local complex valued holomorphic
functions on N to local V -harmonic functions on M.
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Proof. Let us consider p € M a given point, {x;}, local coordlnates at p, {za}

i=1,m a=1n
local complex coordinates at p(p) € N, and ¢® = 2z, 0 p. By M ij and N L/@V are

denoted the Christoffel symbols on M and N, respectively. The vector field V, in local
coordinates in M, reads: V = Z f ax

Suppose that ¢ is PVHM and f: N — Cis a local holomorphic function on V.
Using the V-tension field of composition of two maps (Lemma 2.3) and the V-
harmonicity of the map ¢ (Definition 2.1):

Tv(fop)=df(tv(p)) + traceVdf (dp, dp) = traceVdf (de, dp).

i oo

a=1

- (p) 52 (9(p)), we

In order to prove that 7y (f o ¢) = 0, since d@P(ax,( D))

compute at p:

a=1 B=1
n n
- ™ 9 9o 5\ _
(9) = a;ﬁ; vdf <a§i Ben %@) =
n
_ @ 9pf )
- Z 6i2 aﬁ] Vdf 0z’ 82@)

To compute Vdf ( Dea? 925 ) first let us remark that f~!7C = N x C is the trivial

vector bundle and the fibre (f~'TC),,) = C. The induced connection on the pull-back
bundle f~'T'C is defined by:

Vﬁa = X(0),Yo € T(f'TC), (¢ : N — C is a map)

So,
(10)
Vdf (52,22 ) =V, df(zZ) —df (VY 22) =22 (L) —df (VY, 12 ) =
f 0za 023 - a%f(azﬁ) f( 85)78% 0zp f 8%8,23 -
2 2 n
— 8;’15;6 —df <E NL25£7> — a,igzﬁ - 21 NLgBdf(%) —
Y= V=

_ & NN Of
Brads ~ 2 Lastz,
’y:

From the equations (9) and (10) we obtain:

0 O 0p® O’ f ~ 09" 0Py o Of
vdf (d(p ((‘31’@) de (8333)) Z Ox; Oxj 024023 az dx; Ox; aﬁ@z
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and
traceVdf (dap ( ) dy (ij )) =
m n n
_ ij 00 008 _0%f 00> 0P N7y Of | _
(11) =X 9”( DL Oui Ouy 9radzs — 2o o on; Lapai | =
1,7=1 a,B=1 a,B,y=1
n m n m
17 90 9P 9? 17 90 B )
= > > gY afgi i aza(éfZB - > > 9”3%1% NLaﬁ%
a,f=1 \i,j=1 ! a,By=1 \ij=1 I U

As ¢ is PHWC (see (6)), the term Z gIE 90" 8‘5 in relation (11), vanishes, so
1,5=1

traceVdf <dg0 (ai > de <8i >> =0.
i J

Conversely, consider f : N — C a local complex holomorphic function, V' a smooth
vector field on M, and ¢ : M — N a smooth map, such that 7 (f o ¢) = 0.
Applying the chain rule for V-harmonic maps (Lemma 2.3), we get:

(12) 0 =df (1v(p)) + traceVdf (dy, dp)

We compute the above equality in local coordinates, using the local description of the
V-tension field (4) and the equation (11):

) N R 17 0% D
= S @) gL+ 3 S Vi A
a=1 a=1i=1
(13)
n m n m
..8aaﬁ 62f "6“86 N7 af
E (Z g’Lj 8321' 3§j> 020028 - Z <Z gU éfci (9?’2) af 9z,
o,B=1 \i,j=1 a,B,y=1 \4,j=1
Choosing in (13) particular holomorphic functions f, for example f(z) = zx,Vk = 1, n,
2
and normal coordinates centred at p (respectively, at ¢(p)), then O — 0, I — Oy,
Fzadzs 92y Y

and the Christoffel symbols of N vanish. Then,
v (f o @) = 0 is equivalent to:

kLN, 00"
() +Z%8(L" =0,Vk =1,n,
i=1 ¢

m
where the term 7(p)F + 3 Vi%—ff = 0 is the k£ component of the 7y ().
i=1 ¢

This proves that ¢ is a V-harmonic map. It follows that the equation (12) reduces
to: traceVdf(de,dy) = 0.
In this last equality, choosing f(z) = zq2, Ve, 8 = 1,n and normal coordinates in M

and N respectively, 82(232 ) — 1,and NL) ap = 0, implies

i gijaﬂaiﬂ _
6952- 8$j

ij=1
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which means that ¢ is PHWC. O

The following result gives a relation between V-harmonic morphisms, pseudo harmonic
morphisms and pseudo V-harmonic morphisms.

Proposition 3.3. Let (M,g) and (N,h) be two Riemannian manifolds, V a smooth
vector field on M, (P,J,p) a Kdhler manifold and ¢ : M — N and ¢ : N — P
two smooth maps. If ¥ is V-harmonic morphism and ¢ is pseudo harmonic morphism
(PHM), then ¢ o is pseudo V -harmonic morphism (PVHM).

Proof. As ¢ is a pseudo harmonic morphism (see Section 1.2), for any f : W — C
a local complex valued holomorphic function defined in an open subset W C P, with
¢ 1(W) C N non-empty, fo¢: ¢ (W) — C is a local harmonic function on N.

Using Corollary 2.5 for the V-harmonic morphism v and the local harmonic function
fop:o Y (W) — C,on N, we get fopor: 9 (e }(W)) — C, alocal V-harmonic
function on M.

So, p o1 : M — P pulls-back local holomorphic functions on P to local V-harmonic
functions on M. By Theorem 3.2, ¢ o ¢ is PVHM. g

3.2. V-minimal submanifolds. Let (M, g) be a Riemannian manifold, V' a smooth
vector field on M, and K a submanifold of M. For any « € M, we have the orthogonal
decomposition of the tangent bundle T, M = T, K ®T, K", with respect to g,. According
to this decomposition, ¥ VxY =X VyY + A(X,Y),VX,Y € I'(TK). The symmetric
bilinear map A : TK x TK — TK™* is the second fundamental form of the submanifold
K.

Definition 3.4. The submanifold K of M is called V-minimal if
trace(A) —V e I'(TK).

When K is the fibre of a map on M, the V-minimality condition translates to
trace(A) — V is a vertical vector.

Theorem 3.5. Let ¢ : (M™, g) — (N?",J,h),n > 2, be a pseudo horizontally homo-
thetic submersion (PHH). Then ¢ is V -harmonic if and only if ¢ has V-minimal fibres.

Proof. Similar to Proposition 3.3, [1], we can choose in the pull-back bundle ¢ 'T'N a
local frame {ej,eq,...,en, Jer, Jea, ..., Je,} such that

{do*(e1),...,dp"(en),dp"(Je1),...,dp"(Jen)}

is an orthogonal frame in the horizontal distribution: choose e; € T'(¢p T N) a non-
vanishing section and, using the PHWC property of ¢ and the fact that dy*(e1) is an
horizontal vector, we get the orthogonality of dy*(e1) and dp*(Je1). At step k, take eg
orthogonal on both vectors dy o dp*(e;) and dy o dp*(Je;), Vi < k — 1.

If we denote by Ej, = dy*(ey), B}, = dp*(Jey), then we have an orthogonal frame in
the horizontal distribution H(T'M), {E1, Ea, ..., Ey, B, ..., E}}.

We pick up {u,ug,...,us} an orthonormal basis for the vertical distribution V(T'M).

By the PHWC property of ¢, we observe that:

(14) de(E}) = dp(dy*(Je;)) = J(dp o dp™(e;)) = Jdp(E;).
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and

9(Ei, E;) = g(dp*(ei),dp*(e;)) = h(ei, (dp o dp*)(e;)) =
(15) = h(Je;, J(dpodp*)(e;)) = h(Je;, (dp o dp*)(Je;)) =
= g(dy*(Je;),dp*(Jei)) = g(E], EY)

Using the property of the induced connection V¥ on ¢ !T'N (see Lemma 1.16, [11]),
(14) and (15), we compute:

Vi do(E)) = Vi, Jdp(E) = IV ,de(E) = J(VE,do(E;) + dp(Ej, Ei)) =
= Vg, Jde(E}) + Jdo([E;, Ei]) =

= —V§.do(E;) + Jdp(E], E;])
and

Sy AP (B B) = sty (Vade(BY) + Vi de(E;)) =
(16) - mvﬁd@(@{) + sy VB, de(E) =

As ¢ is PHH, we get:

dp(ViE)) = dp(Vide* (Jei)) "B Jdp(VY g™ (e:)
Jdp(VY E;) = Jde(VY E| + |El, E))) =

(17) J\/f ’

= JdSO(VE do* (Jez))+Jd@([Ei’Ei]) =

= —dp(VY E) + Jde((E), Ei)).

oy # M . # M gt
U9 By U B = o my PV E R+ gy eV e

Using equations (16) and (18) and the orthonormal basis of vertical vectors {u;}
the tension field of ¢ reads:

i=1,s?

7(p) = zl 5y (Vi dp(Ei) — do(VH E;))+
+ 2. gty (Vigde(ED — de(VEED)+
+J§1 sty (Vi de(u) — de(Vifu;) =

= - Zld@(vﬁfuj') = —dSD(Zlvﬂfuj)
= j:

S
If ¢ is a V-harmonic map, then 7 (¢) = 0 and since 7(p) = —dp( > Vﬁ/j[_uj) we get:
j=1

0= —d(p(z V%uj) +dp(V)
j=1
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which is equivalent with the V-minimality of the fibres.
Conversely, suppose ¢ has V-minimal fibres. As ¢ is a PHH submersions, in the above
constructed frame {u1,...,us, Ev,...,En, E}, ..., El}, the V-tension field of ¢ reads:

() = —dp(d_ Vilu;) + dp(V)
j=1

The V-minimality of the fibres imply dy(trace(A) — V) = 0.
Let us choose y € N, and denote the fibre by K = o~ 1(y).
Using (15),

S S

trace(A) =V = 3 A(uj,u;) =V = ——A— 3 (VM — VEw) -V

;) -
i=1 gM(u1 z) =

Since VE u; is vertical, dp(VEu;) = 0, and

dp(trace(A) = V) = chp(vgfui) —dp(V),
i=1

so ¢ is V-harmonic. 0

The construction of minimal submanifolds was done for horizontally homothetic har-
monic morphisms (see [3]) and generalised for the case of pseudo-horizontally homothetic
harmonic submersions (see [1]). Replacing harmonicity by V-harmonicity, a similar re-
sult can be proved.

Theorem 3.6. Let (M™, g) be a Riemannian manifold, (N?", J, h) be a Kdhler manifold,
V' a smooth vector field on M and ¢ : M — N be a pseudo-horizontally homothetic
(PHH), V -harmonic submersion.

If P C N?" is a complex submanifold of N, then ¢~ Y(P) C M is a V-minimal
submanifold of M.

Proof. As in ([1]), let us consider the decomposition of T'M into the vertical distribution
V and the horizontal one H, T, M =V, & H,, for any point z € M. Denote ¢~ !(P), by
K, Hy = TKNH and H» the orthogonal complement of H; in H. Also, T, K =V, ®H;_,
H, = Hlx & ng, le = {u € Hz,dgom(u) S Tgo(x)P}7 for any x € K.

We can choose a linearly independent system of local sections {eq, ..., ep, Je1, ..., Jep}
in o !TN, such that, if we denote by E; = dp*(e;) and E! = dp*(Je;), the restriction
of the system to K is a local orthonormal basis in Hj.

The way the system was chosen is the following: since d(‘%mz o dyp? is a linear iso-

morphism, take v; a local section of ¢~ !TP, non-vanishing along K and choose the
section e of ¢ 'TN, such that (dyp o dp*)(e1) = v1. Using the PHWC condition of ¢,
do(dp*(Jep)) is also a section of ¢ !TP and dy*(e1) and dy*(Je;) are orthogonal local
vector fields in H and also in Hy. By induction, at step k, we take e perpendicular on
both (dy o de*)(e;) and (dp o dp*)(Je;),V1 < i < k — 1, such that (dy o dp*)(e;) is a
section in ¢ TP,

In the sequel the computations are done only on points of K.
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Consider {uy, ug,...,u,} an orthonormal local basis in the vertical distribution V' such
that {u1,u2,...,u, En,..., Ep, By, ..., E)} is an orthogonal local basis in TK. Denote
by A the second fundamental form of the submanifold K.

The V-minimality of K is equivalent to trace(A) —V € I'(TK) which reads:

T p P
> Auj,ui) + > A(EL E) + Y. A(EL EL) — V € T(TK) or equivalent:
i=1 i=1 i=1

: gnr (s ug)
i=1

+ Z |:9M @ Ey (Vi E = Vi) + s de(Vi Bl - VE(Z{ED} —dp(V)

to be a section of ¢~ !TP.
Using relations (15) and (17), we compute:

> [;dgp(v,ﬂ{ui - VEu)| +

p

2 [mdw% - Vﬁiw)} +

p
+ 3 [ W (VEE) + by de (VI EY)] -

1=1
p
K —_—
(20) L [ (VEB) + g (VEED] - delv) =
p
- ; [md(p(vuj‘{ui - VUKZul)} +
- p
+22 WJdcp[ Ei] -2 dew[ B - dp(V) =

=1

@
Il
—

p
do(ViTu;) — ; do(Viu) — de(V)

|
AM%

@
Il
—

As ¢ is a pseudo-horizontally homothetic V-harmonic submersion, from Theorem

(3.5), ¢ has V-minimal fibres, which is equivalent to: dgo(z Vilug) = de(V).

=1

Hence, trace(A)—V € I'(TK) is equivalent to Z dp(VE u;) is a section of o' TP. O
i=1
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